ARTIC-LTM 3D Ti **SPINAL SYSTEM TOPOGRAPHY AND CHEMISTRY OF IMPLANTS ON BONE RESPONSE EVIDENCE MATRIX**

© 2019 Medtronic. All rights reserved. Medtronic logo and Further, Together are trademarks on Medtronic. Medtronic has agreements with publishers, U.S. and international licenses with the Copyright Clearance Center (CCC), and a U.S. license with the music performing rights organization ASCAP to permit the distribution of copyrighted resources within Medtronic. Copyright and publisher licenses prohibit the distribution of print or digital publications outside Medtronic. **This document is intended for educational purposes only.** UC202004590a EC | 2019-OCT-08

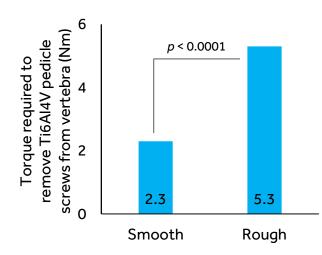
>

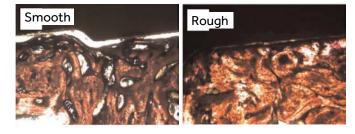
$\textbf{ARTiC-L^{TM} Evidence Matrix}$

ACRONYMS

EVIDENCE		SYNOPSIS
Implant Texture & Bone Response	Schwartz (2008)	Rough Ti6Al4V pedicle screws promoted bone-implant contact and required more torque strength to displace in sheep spine model.
	Deng (2015)	Rough PEEK threaded implants promoted bone growth in dog model.
	Pelletier (2016)	Plasma-treated Ti interbody implants promoted bone-implant contact in sheep spine model.
Osteolysis	Takenaka (2014)	Identification of foreign particles resulting in vertebral osteolytic defects in a case report.
Topography on Osteogenic Cellular Activity	Olivares- Navarrete (2013)	Topography (Ti/PEEK) impacts production of angiogenic and bone growth factors of osteoblasts.
	Olivares- Navarrete (2012)	Topography (Ti/PEEK) impacts production of bone growth factors and maturation of osteoblasts.
	Yoon (2016)	Topography regulates cell adhesion of hMSCs.

 \geq


HOME


REFERENCES

RESULTS:

- Rough compared to smooth Ti6Al4V surfaces:
 - In vitro: promoted osteoblast differentiation¹ and bone growth factors production¹.
 - In vivo: more bone-implant contact¹, less fibrous tissues, and more torque strength required to remove pedicle screws¹.

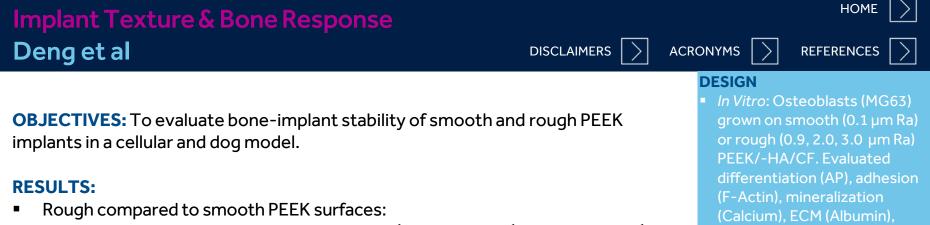
Histology section of smooth and rough Ti6Al4V pedicle screws in sheep spine. Smooth Ti6Al4V were covered by fibrous tissues whereas rough Ti6Al4V showed more direct bone contact and produced mineralized matrix.

INSIGHT: Surface roughness of Ti6Al4V promotes differentiation of osteoblasts and production of bone growth factors *in vitro* and stable bone-implant contact *in vivo* which can lead to increased bone-implant contact and stability.

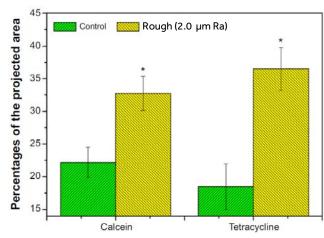
 In Vivo: Smooth (0.2 µm Ra) and rough (3.0 µm Ra) Ti6Al4V pedicle screws (Ti6Al4V) implanted bilaterally in L4/L5 of sheep spine (12 weeks). Evaluated bone-implant interface (Histology), torque displacement (Biomechanical Testing).

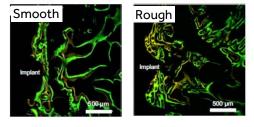
markers (AP, Osteocalcin) and

production (PGE₂, OPG, TGF-


bone growth factor

¹Statistically Significant (p < 0.05)


REFERENCE

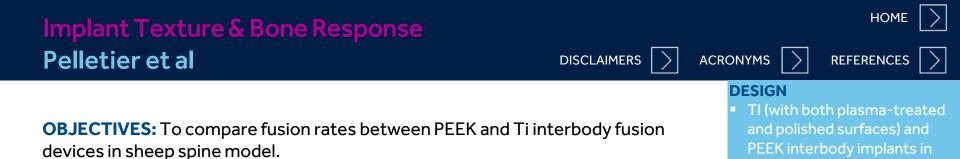

Schwartz et al, J Bone Joint Surg Am. 2008; 90(11):2485-98.

- In vitro: promoted osteoblast adhesion¹, proliferation¹, differentiation¹, ECM absorption¹, bone mineralization¹, and viability¹.
- In vivo: more bone growth¹, bone mineral density¹, trabecular number/thickness¹ without fibrous layer.
- Surface roughness was optimal at 2.0 μm Ra.

Histology of Calcium binding Calcein and Tetracyline administered into dog mandible to assess osteogenic activity revealed that rough PEEK surface implants had greater osteogenic activity. In Vivo: Smooth (0.1 µm Ra) and rough (2.0 µm Ra) PEEK/-HA/CF threaded implants in dog mandible (8 weeks).
Evaluated trabecular architecture (Micro-CT), osteogenic activity (Calcein, Tetracycline Histology).

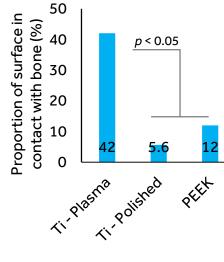
apoptosis (Flow Cytometry).

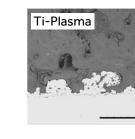
 ¹Statistically Significant for 2.0 µm Ra (p < 0.05).

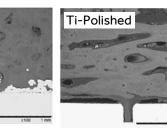

REFERENCE

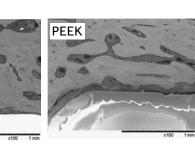
Deng et al, Int J Nanomedicine. 2015; 17;10:1425-47.

Further.Together


Medtronic






RESULTS:

- Fusion rates did not differ between Ti and PEEK interbody implants.
- Plasma-treated Ti surfaces compared to polished Ti and PEEK surfaces:
 - More bone-implant contact¹ compared to polished Ti surfaces and PEEK surfaces.
 - Less direct fibrous tissue contact.

SEM of implants in sheep spine model. Ti-Plasma treated surfaces had greater proportion of surface in contact with bone with less direct fibrous tissue contact than Ti-Polished surfaces and PEEK.

INSIGHT: Surface roughness promotes bone-implant contact *in vivo* which can lead to increased bone-implant contact and stability.

REFERENCE

Pelletier et al, Clin Spine Surg. 2016; 29(4):E208-14. Study Supported by SeaSpine.

sheep spine model in a 2 adjacent level (L2-L4) ALIF

procedure (26 weeks).

interface (SEM).

Evaluated bone-implant

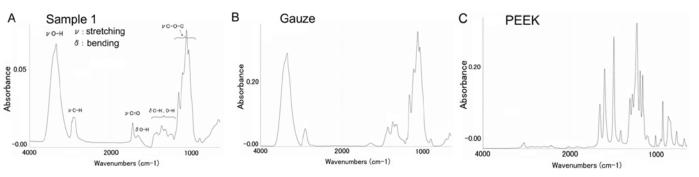
¹Statistically Significant (p <

REFERENCES

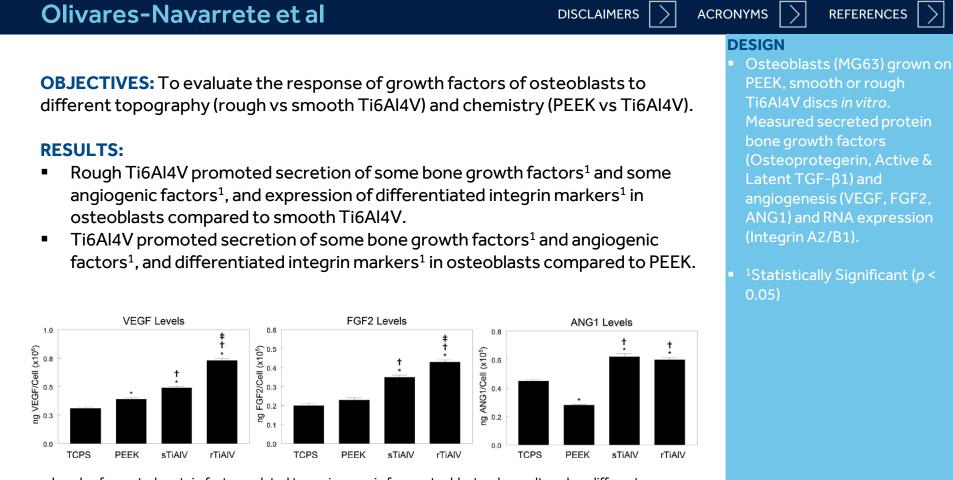
ACRONYMS

- **Case Report**
- 69 year old, leg and low back pain, grade 1 isthmic spondylolisthesis at L5.
- Initial operation: PLIF at L5-S1 & 2 PEEK cages. Postoperatively, patient free from remarkable pain for 14 months where MRI revealed cystic lesions between L5-S1 endplates. CT at 16-19 months revealed vertebral
 - osteolytic defect. **Revision operation (21** months post first surgery): ALIF. Original PEEK removed. 3 samples removed for Postoperative, reduced
 - vertebral osteolytic defect at 6 months and without remarkable pain.

REFERENCE


Takenaka et al, J Neurosurg Spine. 2014; 21(6):877-81.

OBJECTIVES: Identification and evaluation of foreign body particles at a vertebral osteolytic defect.


RESULTS:

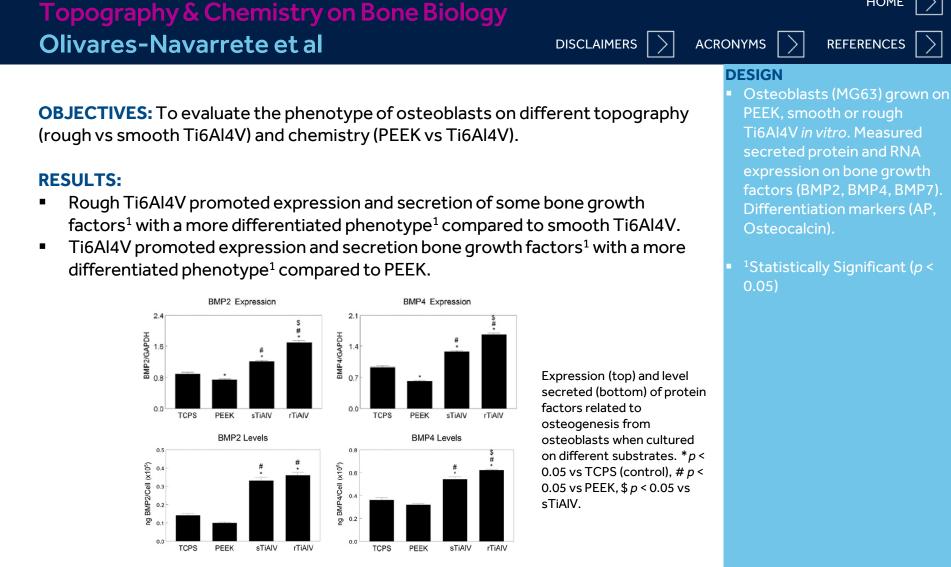
- Samples obtained from patient with vertebral osteolytic defect after PLIF surgery with two PEEK interbody cages contained collagenous connective tissue, bone fragments, consistent with noninfectious pseudarthrosis.
- Samples also included foreign body-type, multinucleated giant cells with 10 µm particles.
- FTIR spectroscopy suggests particles to be natural cellulose derived from cotton gauze.

FTIR Spectroscopy on foreign particles (sample 1) at vertebral osteolytic defect suggests it is derived from cotton gauze.

INSIGHT: Vertebral osteolytic defects in some instances may be aseptically induced by foreign particles, such as cotton gauzes.

Levels of secreted protein factors related to angiogenesis from osteoblasts when cultured on different substrates. * p < 0.05 vs TCPS (control), † p < 0.05 vs PEEK, ‡ p < 0.05 vs sTiAlV.

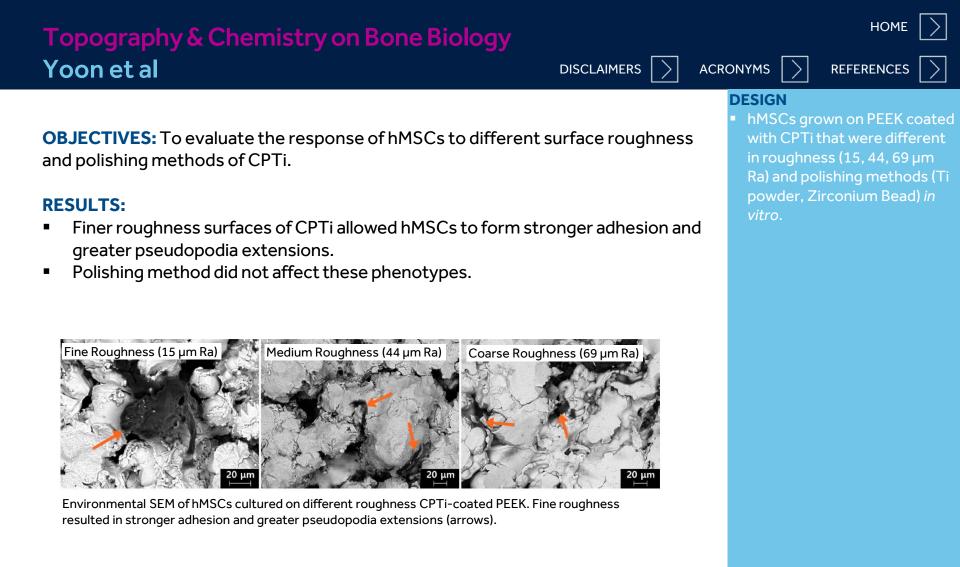
Topography & Chemistry on Bone Biology


INSIGHT: Rough Ti6Al4V promotes the production of angiogenic and osteogenic growth factors of osteoblasts compared to smooth Ti6Al4V or PEEK.

REFERENCE

Olivares-Navarrete et al, Spine J. 2013; 13(11):1563-70. Study Supported by Titan Spine.

HOME


INSIGHT: Rough Ti6Al4V promotes the production of osteogenic growth factors and maturation of osteoblasts compared to smooth Ti6Al4V or PEEK.

REFERENCE

Olivares-Navarrete et al, Spine J. 2012; 12(3):265-72. Study Supported by Titan Spine.

HOME

INSIGHT: Surface roughness regulates cell adhesion and pseudopodia extensions in hMSCs.

REFERENCE Yoon et al, 2016; 16(10):1238-1243.

Acronyms

DISCLAIMERS

ALIF – Anterior Lumbar Interbody Fusion ANG1 – Angiopoietin-1 **AP** – Alkaline Phosphatase **CPTi** – Commercially Pure Titanium **CT** – Computed Tomography **FGF2** – Fibroblast Growth Factor 2 FTIR – Micro-Fourier Transform-Infrared hMSCs – Human Mesenchymal Stem Cells **MRI** – Magnetic Resonance Imaging

OPG – Osteoprotegerin PEEK – polyether-etherketone PEEK/-HA/CF – carbon fiberreinforced polyetheretherketonenanhydroxyapatite ternary composites PGE₂ – Prostaglandin E₂ PLIF – Posterior Lumbar Interbody Fusion TCPS – Tissue Culture Polystyrene TGF-β1 – Transforming Growth Factor Beta-1 Ti - Titanium Ti6Al4V – Titanium-Aluminum-Vanadium Ra – Average Roughness 5TiAlV – Rough Titanium-Aluminum-Vanadium SEM – Scanning Electron Microscope sTiAlV – Smooth Titanium-Aluminum-Vanadium VEGF – Vascular Endothelial Growth Factor

ACRONYMS

HOME

REFERENCES

References

DISCLAIMERS > ACRONYMS

HOME

REFERENCES

Deng et al, Effect of surface roughness on osteogenesis in vitro and osseointegration in vivo of carbon fiber-reinforced polyetheretherketone-nanohydroxyapatite composite. Int J Nanomedicine. 2015; 17;10:1425-47.

Olivares-Navarrete et al, Rough titanium alloys regulate osteoblast production of angiogenic factors. Spine J. 2013; 13(11):1563-70.

Olivares-Navarrete et al, Osteoblasts exhibit a more differentiated phenotype and increased bone morphogenetic protein production on titanium alloy substrates than on poly-ether-ether-ketone. Spine J. 2012; 12(3):265-72.

Pelletier et al, PEEK Versus Ti Interbody Fusion Devices: Resultant Fusion, Bone Apposition, Initial and 26-Week Biomechanics. Clin Spine Surg. 2016; 29(4):E208-14.

Schwartz et al, Effect of micrometer-scale roughness of the surface of Ti6Al4V pedicle screws in vitro and in vivo. J Bone Joint Surg Am. 2008; 90(11):2485-98.

Takenaka et al, Vertebral osteolytic defect due to cellulose particles derived from gauze fibers after posterior lumbar interbody fusion. J Neurosurg Spine. 2014; 21(6):877-81.

Yoon et al, Optimizing surface characteristics for cell adhesion and proliferation on titanium plasma spray coatings on polyetheretherketone. Spine J. 2016; 16(10):1238-1243.

Disclaimers

DISCLAIMERS

ACRONYMS

REFERENCES

Intended use of document: The Evidence Matrix is an interactive PDF that highlights key literature on the impact of topography (surface roughness) and chemistry of spinal implants on bone and its integration through *in vitro* and *in vivo* studies. This document is intended for educational purposes only. Spinal implants from all manufacturers and study sponsors are included in an attempt to provide an objective discussion.

Indications: The ARTiC-L[™] 3D Ti Spinal System with TiONIC[™] technology is indicated for use as an intervertebral body fusion device in skeletally mature patients with degenerative disc disease (DDD - defined by discogenic back pain with degeneration of the disc confirmed by patient history and radiographic studies) at one or two contiguous levels of the lumbar spine (L2-S1). Additionally, the ARTiC-L[™] 3D Ti Spinal System with TiONIC[™] technology can be used in patients diagnosed with spinal deformities as an adjunct to fusion. These patients should be skeletally mature and have undergone 6 months of non-operative treatment prior to surgery. These implants are used to facilitate fusion in the lumbar spine using autogenous bone and/or allogenic bone graft comprised of cancellous and/or corticocancellous bone graft. When used as an interbody fusion device, these implants are intended for use with supplemental internal fixation systems.

Disclaimer: See the device manual for detailed information regarding the instructions for use, the implant procedure, indications, contraindications, warnings, precautions, and potential adverse events. For further information, contact your local Medtronic representative and/or consult the Medtronic website at <u>www.medtronic.ca</u>.

Medical Information Disclaimer: This information is for educational purposes only. Medtronic does not market or promote its products for unlicensed indications or unlicensed products, and makes no representations regarding their safety and efficacy. Medtronic provided financial support related to this work. This document is not a comprehensive review of all available or relevant literature and should not be used as a substitute for a comprehensive literature review and appraisal.

For questions, please contact a Medtronic Canada Clinical Research Specialist team member. To request scientific information or literature, please contact the Office of Medical Affairs of Medtronic Canada (aida.cucui@medtronic.com).

